We supplement the data in the IRW tables with various kinds of metadata about the tables. For clarity, we separately describe the qualitative and quantitative metadata.
Querying IRW tables
Given the volume of tables in the IRW and their heterogeneity, being able to effectively query IRW tables is essential. To do so, we recommend using the irw::irw_filter() function. Information on that function is here . Below we provide a variety of simple use cases; once a user has identified the appropriate tables, irw::irw_fetch() can be used to easily download them.
Code
irw:: irw_filter (n_participants= c (100000 ,Inf )) #Those tables with more than 100000 participants (using default density filter)
[1] "aslec_insomnia_wang2025" "criticalperiod_syntax"
[3] "enem_2013_1mil_ch" "enem_2013_1mil_cn"
[5] "enem_2013_1mil_lc" "enem_2013_1mil_mt"
[7] "enem_2014_1mil_ch" "enem_2014_1mil_cn"
[9] "enem_2014_1mil_lc" "enem_2015_1mil_ch"
[11] "enem_2016_1mil_ch" "enem_2016_1mil_lc"
[13] "enem_2018_1mil_cn" "enem_2018_1mil_lc"
[15] "enem_2018_1mil_mt" "enem_2019_1mil_ch"
[17] "enem_2019_1mil_cn" "enem_2019_1mil_lc"
[19] "enem_2019_1mil_mt" "enem_2020_1mil_lc"
[21] "enem_2021_1mil_ch" "enem_2022_1mil_ch"
[23] "ffm_AGR" "ffm_CSN"
[25] "ffm_EST" "ffm_EXT"
[27] "ffm_OPN" "gender_roles"
[29] "isi_insomnia_wang2025" "mbft_anunciacao_2024"
[31] "nonverbal_immediacy" "phq_insomnia_wang2025"
[33] "pisa2003_science" "pisa2006_read"
[35] "riasec"
Code
irw:: irw_filter (n_participants= c (100000 ,Inf ),density= NULL ) #All tables with more than 100000 participants
[1] "aslec_insomnia_wang2025" "criticalperiod_syntax"
[3] "enem_2013_1mil_ch" "enem_2013_1mil_cn"
[5] "enem_2013_1mil_lc" "enem_2013_1mil_mt"
[7] "enem_2014_1mil_ch" "enem_2014_1mil_cn"
[9] "enem_2014_1mil_lc" "enem_2014_1mil_mt"
[11] "enem_2015_1mil_ch" "enem_2015_1mil_cn"
[13] "enem_2015_1mil_lc" "enem_2015_1mil_mt"
[15] "enem_2016_1mil_ch" "enem_2016_1mil_cn"
[17] "enem_2016_1mil_lc" "enem_2016_1mil_mt"
[19] "enem_2017_1mil_ch" "enem_2017_1mil_cn"
[21] "enem_2017_1mil_lc" "enem_2017_1mil_mt"
[23] "enem_2018_1mil_ch" "enem_2018_1mil_cn"
[25] "enem_2018_1mil_lc" "enem_2018_1mil_mt"
[27] "enem_2019_1mil_ch" "enem_2019_1mil_cn"
[29] "enem_2019_1mil_lc" "enem_2019_1mil_mt"
[31] "enem_2020_1mil_ch" "enem_2020_1mil_cn"
[33] "enem_2020_1mil_lc" "enem_2020_1mil_mt"
[35] "enem_2021_1mil_ch" "enem_2021_1mil_cn"
[37] "enem_2021_1mil_lc" "enem_2021_1mil_mt"
[39] "enem_2022_1mil_ch" "enem_2022_1mil_cn"
[41] "enem_2022_1mil_lc" "enem_2022_1mil_mt"
[43] "ffm_AGR" "ffm_CSN"
[45] "ffm_EST" "ffm_EXT"
[47] "ffm_OPN" "ftna_kasper_2022"
[49] "gender_roles" "gilbert_meta_52"
[51] "isi_insomnia_wang2025" "mbft_anunciacao_2024"
[53] "neurips_2020" "nonverbal_immediacy"
[55] "phq_insomnia_wang2025" "pisa2000_math"
[57] "pisa2000_read" "pisa2000_science"
[59] "pisa2003_math" "pisa2003_problem_solving"
[61] "pisa2003_read" "pisa2003_science"
[63] "pisa2006_math" "pisa2006_read"
[65] "pisa2006_science" "pisa2009_math"
[67] "pisa2009_read" "pisa2009_science"
[69] "pisa2012_math" "pisa2012_read"
[71] "pisa2012_science" "pisa2015_math"
[73] "pisa2015_read" "pisa2015_science"
[75] "pisa2018_math" "pisa2018_read"
[77] "pisa2018_science" "pisa2022_math"
[79] "pisa2022_read" "pisa2022_science"
[81] "riasec" "twod_rotation_mather2023"
Code
irw:: irw_filter (n_categories= c (10 ,Inf ),density= NULL ) #Tables with responses in 10 or more categories
[1] "chile_2023_children-adolescents-survey_cp_c"
[2] "climatechange_geiger_2025"
[3] "cub_relgoods"
[4] "deception_game"
[5] "deception_professors"
[6] "DEMOS"
[7] "det_naismith_2023"
[8] "DMCT_Addis_2020_PSIQ"
[9] "ecps_sahm_2024_ia"
[10] "ecps_sahm_2024_trust"
[11] "envirisk_lalot_2025"
[12] "estcrm_epia"
[13] "estcrm_selfeff"
[14] "evpromisi_stone_2021_global"
[15] "figure_skating"
[16] "florida_twins_par"
[17] "fullscaleiq_memory"
[18] "fullscaleiq_mentalrotation"
[19] "gilbert_meta_95"
[20] "HEARD_Roch_2022_SWLPWI"
[21] "identity_fusion_gomez_2025"
[22] "ieswriting_molloy_2022"
[23] "immer12_immer"
[24] "klippel_irw"
[25] "mgkt"
[26] "ml_harper_2015"
[27] "much_tte_2025_currentmotivation"
[28] "nas_rogoza_2024_study5_nas"
[29] "nas_rogoza_2024_study5_ngs"
[30] "nas_rogoza_2024_study5_nvs"
[31] "neurodegenerative_huizinga_2019_svc"
[32] "psiq_woelk2022"
[33] "realpic_souza2021"
[34] "rightwing_authoritariansim"
[35] "SBD_Smith_2020"
[36] "simsalRbim_Mice_LargeValence"
[37] "simsalRbim_Mice_LowValence"
[38] "simsalRbim_Monkey_LargeValence"
[39] "sned_bendall_2024"
[40] "socialstereotype_hughes_2025_judgement"
[41] "tears"
[42] "western_reserve_project"
[43] "wine_luckett2021"
[44] "wvs_panasiuk_family"
[45] "wvs_panasiuk_national_identity"
[46] "wvs_panasiuk_perception_of_life"
[47] "wvs_panasiuk_politics_society"
[48] "wvs_panasiuk_religion_morality"
[49] "wvs_panasiuk_science"
[50] "wvs_panasiuk_work"
[51] "yu2025"
Code
irw:: irw_filter (var= 'rt' ) #Tables with response time data
[1] "artistic_preferences"
[2] "brain_hemisphere"
[3] "broadband_inventories"
[4] "chess_lnirt"
[5] "credentialform_lnirt"
[6] "dd_rotation"
[7] "depression_anxiety_stress"
[8] "DMCT_Addis_2020_MCT"
[9] "face_memory_test"
[10] "ffm_AGR"
[11] "ffm_CSN"
[12] "ffm_EST"
[13] "ffm_EXT"
[14] "ffm_OPN"
[15] "fisher_temperment"
[16] "fullscaleiq_memory"
[17] "fullscaleiq_mentalrotation"
[18] "fullscaleiq_vocab"
[19] "gcbs_brotherton_2013"
[20] "gilbert_meta_102"
[21] "gilbert_meta_103"
[22] "gilbert_meta_104"
[23] "introversion_extroversion"
[24] "machivallianism_test_main"
[25] "mgkt"
[26] "much_tte_2025_matrixreasoning"
[27] "nature_relatedness"
[28] "nomt_hooper_2024_study2"
[29] "nonverbal_immediacy"
[30] "protestant_workethic"
[31] "roar_gijbels2024"
[32] "roar_lexical"
[33] "sned_bendall_2024"
[34] "vocab_assessment_3_to_8_year_old_children"
Code
irw:: irw_filter (age_range= "Child (<18y)" ) #Tables with child-focused data
[1] "4thgrade_math_sirt"
[2] "ALSECYPIAMH_WU_2022_CPS"
[3] "ALSECYPIAMH_WU_2022_Empathy"
[4] "ALSECYPIAMH_WU_2022_MIL"
[5] "ALSECYPIAMH_WU_2022_NEI"
[6] "ALSECYPIAMH_WU_2022_PEI"
[7] "ALSECYPIAMH_WU_2022_PHQ"
[8] "ALSECYPIAMH_WU_2022_PIL"
[9] "ALSECYPIAMH_WU_2022_SDQ"
[10] "ALSECYPIAMH_WU_2022_SWEMWBS"
[11] "ALSECYPIAMH_WU_2022_SWLS"
[12] "AMI_CV_Hewitt2024"
[13] "aslec_insomnia_wang2025"
[14] "BAFACALO_Golino_2013_BVPS"
[15] "BAFACALO_Golino_2013_CIS"
[16] "BAFACALO_Golino_2013_SMS"
[17] "balance_mokken"
[18] "cdm_pisa00R"
[19] "cdm_timss03"
[20] "cdm_timss07"
[21] "chile_2023_children-adolescents-survey_aa"
[22] "chile_2023_children-adolescents-survey_g"
[23] "chile_2023_children-adolescents-survey_k"
[24] "chile_2023_children-adolescents-survey_n"
[25] "content_literacy_intervention_g1"
[26] "credentialform_lnirt"
[27] "criticalperiod_syntax"
[28] "csft_ye_2025"
[29] "difnlr_msatb"
[30] "dscore_asq_weber_2019"
[31] "dscore_barrera_weber_2019"
[32] "dscore_battelle_weber_2019"
[33] "dscore_denver_weber_2019"
[34] "dscore_macarthur_weber_2019"
[35] "dscore_mds_weber_2019"
[36] "dscore_pegboard_weber_2019"
[37] "dscore_sbi_weber_2019"
[38] "EEN_Lacey_2024_Children"
[39] "enem_2013_1mil_cn"
[40] "enem_2014_1mil_cn"
[41] "enem_2015_1mil_ch"
[42] "enem_2018_1mil_lc"
[43] "enem_2018_1mil_mt"
[44] "enem_2019_1mil_ch"
[45] "enem_2019_1mil_cn"
[46] "enem_2019_1mil_lc"
[47] "enem_2019_1mil_mt"
[48] "enem_2020_1mil_lc"
[49] "enem_2022_1mil_ch"
[50] "erf_breuer_2017_dosp"
[51] "erf_breuer_2017_frmfr"
[52] "erf_breuer_2017_frmmc"
[53] "erf_breuer_2017_tai"
[54] "FACES_Spanish_Vegas_2022_FACES"
[55] "FACES_Spanish_Vegas_2022_FSS"
[56] "florida_twins_auth"
[57] "florida_twins_chaos"
[58] "florida_twins_class"
[59] "florida_twins_dbi"
[60] "florida_twins_game"
[61] "florida_twins_grit"
[62] "florida_twins_hwk"
[63] "florida_twins_leq"
[64] "florida_twins_media"
[65] "florida_twins_pals"
[66] "florida_twins_par"
[67] "florida_twins_read"
[68] "florida_twins_sch"
[69] "florida_twins_tech"
[70] "frac20"
[71] "gilbert_meta_1"
[72] "gilbert_meta_10"
[73] "gilbert_meta_102"
[74] "gilbert_meta_103"
[75] "gilbert_meta_104"
[76] "gilbert_meta_11"
[77] "gilbert_meta_12"
[78] "gilbert_meta_15"
[79] "gilbert_meta_16"
[80] "gilbert_meta_2"
[81] "gilbert_meta_39"
[82] "gilbert_meta_40"
[83] "gilbert_meta_55"
[84] "gilbert_meta_64"
[85] "gilbert_meta_7"
[86] "gilbert_meta_78"
[87] "gilbert_meta_8"
[88] "isi_insomnia_wang2025"
[89] "mpsycho_ceaq"
[90] "mpsycho_Rogers"
[91] "mpsycho_youthdep"
[92] "mpsycho_zareki"
[93] "naep_multilcirt"
[94] "nit_must_2014"
[95] "oxfordcovid_xue_2024_pswq_c"
[96] "oxfordcovid_xue_2024_school"
[97] "phq_insomnia_wang2025"
[98] "pirlsmissing_sirt"
[99] "pisa2003_science"
[100] "pisa2006_read"
[101] "PMT_Trzcinska_2023_finans"
[102] "PMT_Trzcinska_2023_MVS"
[103] "PMT_Trzcinska_2023_PMT"
[104] "PPPASBPNSSedaisw_Pedro_2022_EBSV"
[105] "PPPASBPNSSedaisw_Pedro_2022_NPBE"
[106] "PPPASBPNSSedaisw_Pedro_2022_PANAS"
[107] "preschool_sel_akt"
[108] "preschool_sel_box"
[109] "preschool_sel_dn"
[110] "preschool_sel_htks"
[111] "preschool_sel_pl"
[112] "previc_bohn2023"
[113] "project_kids_ctopp"
[114] "project_kids_kbit"
[115] "project_kids_told_grade"
[116] "project_kids_told_wave"
[117] "project_kids_topel"
[118] "project_kids_wj_ak_grade"
[119] "project_kids_wj_ak_wave"
[120] "project_kids_wj_lwid_grade"
[121] "project_kids_wj_qc"
[122] "project_kids_wj_spell_wave"
[123] "project_kids_wj_wf"
[124] "PROMISPME_Forrest_2021_GHGlobal_Children"
[125] "PROMISPME_Forrest_2021_Physical_Children"
[126] "PROMISPME_Forrest_2021_Physical_Proxy"
[127] "PROMISPME_Forrest_2021_PosAff_Children"
[128] "PROMISPME_Forrest_2021_Psych_Children"
[129] "psychtools_blot"
[130] "PTAM_Kretzschmar_2017_Raven"
[131] "PTAM_Kretzschmar_2017_Reasoning"
[132] "quantshort"
[133] "roar_gijbels2024"
[134] "rrca_mcneish_2025_exp"
[135] "rrca_mcneish_2025_sen"
[136] "rrca_mcneish_2025_use"
[137] "sat12_wilson_2003"
[138] "scoliosis_dueber"
[139] "test_taking_patterns_over_time"
[140] "timss_tam"
[141] "transreas_mokken"
[142] "vocab_assessment_3_to_8_year_old_children"